dersetkinlik.com


REKLAMLAR

GEOMETRİNİN TARİHSEL GELİŞİMİ

GEOMETRİNİN TARİHSEL GELİŞİMİ

Mezopotamyalılar’da Geometri

Mezopotamya matematiği hakkındaki bilgiler, zamanımıza kadar intikal etmiş tabletlerin değerlendirilmesi sonucu elde edilmektedir. Bu tabletler bilim tarihinde; Susa, Vatikan 8512, Tell Halman, Plimpor 322, British Museum 85114 ve Elam tabletleri şeklinde adlandırılmıştır.

Bugün, Thales Teoremi olarak bilinen teoremin varlığı, Thales’ten 1700 yıl ve Öklid’ten 2000 yıl kadar önce biliniyordu. Bu bilgiye esas olan kaynak tabletteki geometrik resim, gayet doğru ve güzel şekilde çizilmiştir. Aydın Sayılı; adı geçen eserinde, Susa tabletlerine dayanarak: Thales Teoremlerinin nasıl ortaya çıktığını belirtir. Bu teoremlerin, Öklid tarafından bilindiğini ve Elementler adlı eserinin, 6. ve 8. teoremler olarak açıklandığını yazar.

Kaynaklardan şu sonucu çıkarmaktayız. Bugünkü klasik geometri veya Eski Yunan geometrisinin temsilcileri olarak görülen, Thales, Pisagor ve Öklid’e dayalı geometri bilgilerinin temelinde Mezopotamya matematiği bulunmaktadır. Başka bir ifade ile; Mezopotamyalılar tarafından, bu geometri bilgileri, Eski Yunan matematikçilerinden, çok önceki yıllarda bilinmekte olduğu anlaşılmaktadır. Aydın Sayılı, bu konuda adı geçen eserinde, belirgin örnekler verdikten sonra şunları yazar ; “Mezoptamyalılar’ın, açıkladığımız bu bilgilere, ya da mahiyeti ne olursa olsun, bunlara denk olan bilgilere sahip olmaları gerekmektedir.” Başka bir yerde de : “Mezopotamya geometrisi ile bazı müşterek vasıflara sahip olması hiç de imkansız olmasa gerek.” Konunun en büyük otoritelerinden Neugebaur’un yorumlanmış şekline göre, yukarıdaki sonucu alabilmeleri için, Mezopotamyalılar’ın aşağıdaki temel bilgilere sahip olmuş olmaları gerekmektedir;

• Kirişin çevreye uzaklığını veren doğru parçasının uzantısı çemberin merkezinden geçer.
• Bu doğru parçası kirişe diktir ve kirişi ortalar.
• Çapı gören çevre açısı diktir.
• Aynı doğruya ayrı ayrı dik olan iki doğru, aralarında paraleldir.
• Dik üçgenleri için “Thales Teoremi” münasebeti.
• Pythagoras Teoremi.

Kaynaklar; geometri konusunda şu bilgileri de vermektedir. Çemberi de, ilk önce 360 dereceye Mezopotamyalılar’ın ayırdığı, bu geleneğin Mezopotamya menseli olup Yunanlılara, Mezopotamyalılar’dan geçtiği bilinmektedir. Kesik piramidin hacminin ortaya konması ve ispatlanması geometride önemli bir yer tutar. Mezopotamyalılar, kesik piramit hacmine ek olarak, piramit hacim formülünü de bilmiş olmaları gerekiyor. Netice itibariyle, Babilliler, bugün Eski Yunandan beri Pisagor Bağıntısı diye adlandırılan teoremi biliyorlardi. M.Ö. 18. yüzyıla (Birinci Babil İmparatorluğu Devri) ait tablette, bugün Pisagor Bağıntısı dediğimiz : b2 + c2 = a2 formülüyle bağlı; a, b, c gibi sayılar üç sütun üzerine sıralanmış; birinci sütuna c, ikinci sütuna a, üçüncü sütuna da, b gibi sayılar kaydedilmiş, c lere karşılık olan sayılar belirtilmemiş. Fakat Örneğin; 32 + 42 = 52 ifadesinden ve buna benzer sonuçlardan yararlanmışlardır. Bu suretle, Pisagor’dan on iki yüzyıl önce, bu gibi sayılara ait özellikleri bilen Mezopotamyalılar’ın soyut aritmetik problemlerine dayanarak, sayılar teorisi esasları üzerinde zihni bir merak aşamasına varmış oldukları anlaşılmaktadır.

Rönenans Dönemi Geometrisi

Batı’da Geometri araştırmalarına ancak XV. yüzyılın ortalarına doğru yeniden bir canlanma geldi. Eskiden geometrik şekiller üzerinde ayrı ayrı özel uygun metotlarla durulur, inceleme yapılırken, yeni bir anlayışla, genelleme ve soyut inceleme yoluna girilir oldu. Mesela meşhur teğetler problemi bu açıdan yeni bir metodla ele alındı. Konikler, Arşimed spirali gibi eğrileri ilgilendiren teğetler, eskiden beri çok dikkatli, derin, fakat birbirinden farklı görüşlere göre incelenmekte idi. Daire dışında, daha karmaşık eğriler için yapılacak teğet tanımının, daire teğetleri için yapılan, “yalnız tek bir ortak noktası bulunan doğru” tanımından farklı olması gereği anlaşılmıştı. Ve teğet için “eğri ile ortak tek bir değme noktası bulunan ve bu noktadan eğri ile kendisi arasında başka hiçbir doğru çizilemeyen doğru” tanımı kabul edilmişti. Yeni ve artık modern diye nitelendirilecek olan görüşte ise, genel olarak, teğete eğrinin bir noktası etrafında dönen bir kesenin limit durumu gözüyle bakılmaya başlanmıştır. Bu görüş ve tanım özellikle Descartes ve Fermat gibi XVII. yüzyıl matematikçileri tarafından benimsenerek yararlı hale sokulmuştur.

Bundan başka, şekilleri tamamıyla belirli ve basit olma özelliğiyle nitelendirmek yerine, yeni matematikçiler, inceleme konusu yapılan şekle, değişken bir şeklin özel hali gözüyle bakmaya başlamışlardır.Bir eğriye de, içine çizili ve kenarları gittikçe küçülen bir poligonun limiti gözüyle bakılma geleneği kuruldu.Rönesans devri geometrisinin başka karakteristik bir yanı da, geometri meselelerine yavaş yavaş cebir hesaplamalarının ithal edilişidir. Bu da görüleceği üzere, Analitik Geometri’nin oluşturulmasına yol açmıştır.Geometri araştırmaları bakımından bu dönem matematikçileri arasında kendilerinden özellikle bahsedilmesi gerekli olanlar Vieté ve Keplerdir. Kepler’in ünü daha çok astronomi konuları üzerindeki çalışmaları nedeniyledir. Bununla beraber, parabola elipsin limit hali gözüyle bakma suretiyle geometriye süreklilik kavramını kazandırmasını, hiperbolü de sonsuzda birbirini kesen iki paralel doğrunun limit hali olarak tanımlamasını Kepler’in ilgi çekici buluşları arasında saymak gerekir.

Tasarı Geometrinin Tarihsel Gelişimi

Tarihin ilk zamanlarında bile, insanlar, konularını açıklamak ve tanımlamak için, bazı şekilleri zihinlerinde canlandırma yoluna gitmişlerdir. Çağımızda bu anlatım; teknik resim, perspektif, fotoğraf ve benzeri yollarla yapılmaktadır. Tasarı geometri üzerine ilk bilgiler, Fransız matematikçi Gaspard Monge tarafından ortaya konmuştur. Gaspard Monge, tasarı geometrinin ana ilkesi olan, dik izdüşüm metodu üzerind eçalışmalarda bulundu. 1795 yılında bu konuda, ilk kitabını yayınlamıştır. Böylece, cisimlerin grafik olarak gösterilmelerine ait temel prensipler ortaya atmış ve uzaysal teknik problemlerin de, çözümlenmelerini sağlamıştır. Matematik tarihi eserleri, Gaspard Monge için “Tasarı geometriyi kurmuş ve sistemleştirmiştir” şeklinde bahseder. Gaspard Monge; tasarı geometrinin konusunu ve temel amacını şöyle belirtmektedir: “Sadece iki boyutlu olan bir resim kağıdı üzerinde üç boyutlu ve tam doğru olarak, tabiatta belirli cisimleri temsil edebilmek ve eksiksiz bir tasvir ve tanımlama yapmak suretiyle cisimlerin şeklini tanımayı mümkün kılarak, şekillerinden ve karşılıklı konumlarından ileri gelme bütün gerçek bilgileri elde etmek.

Tasarı geometride inceleme yapan diğer bir matematikçi olarak ta Poncelet’i görmekteyiz. Poncelet, bu konuda analitik geometri ile rekabet edebilecek derecede fikirler öne sürmüştür. Poncelet,süreklilik ve izdüşüm prensiplerine dayanan, sırf geometrik bir metot kabul etmiştir. Ayrıca bu konuda; Charles, Pudlowski gibi matematikçiler de ilgilenmişler ve bazı münferid temel bilgiler ortaya koymuşlardır.

Türk-İslam Dünyası’nda Geometri
Matematiğin; aritmetik, cebir ve trigonometri dallarında kurucu denecek kadar eser ortaya koyan, 8. ile 16. Türk – İslam Dünyası alimleri; geometri dalında da, temel teşkil edecek, zamanı için orijinal ve kıymetini uzun yıllar koruyan eserler ortaya koymuşlardır. İlk defa, cebiri geometriye tatbik etme fikri, ilmi metotlarla çalışan, bu devir matematikçilerinin eseri olmuştur. Bu durum, geometrinin çok kısa zamanda gelişmesini sağlamıştır. Özellikle, Eski Yunan alimlerinin ortaya koydukları geometri konularını kapsayan eserler, uzun yıllar anlaşılamamıştır. Ne zaman ki; İslam alimlerinin bu eserlere yazdıkları yorumlamalar sonucu, Öklid ve çağdaşlarının eserleri ancak anlaşılabilirlik kazanmıştır. Bunlardan;
:: Hârizmî ve Geometri
Matematikte yeni sayılabilecek bir dal olan, analitik geometri ile ilgili eserler, analitik geometriyi, 16. yüzyıl Fransız matematikçi Descartes’in, 1637 yılında yazdığı La Geometri adlı eseri ile başlatırlar. Gerçekte, Hârizmî tarafından 830 yılında Arapça olarak yazılan Cebri ve’l Mukabele adlı eserde, analitik geometriye ait ilk bilgiler ortaya konmuştur. Hatta, Ömer Hayyam’in Cebir adlı eserinde de, analitik geometriye ait bilgilerin varlığı görülür. Analitik geometrinin Descartes’la ilgisini, şu şekilde belirtmek, gerçeğin tam ifadesi olur.
Descartes, kendisinden önceki yıllarda var olan analitik geometri bilgilerini toplayarak sistemleştirmiş ve kısmen de genişletmiştir. Müsteşrik Sigrid Hunke, analitik geometri konusunda aynen şunları yazar. “Adedi çokluklarla (kemiyetlerle) geometrik çoklukların beraber yürütülmesi gerektiğine dair kesin fikir de ilk olarak, İslam ilim sahasında rastlanır … Rönesansımızın üstatları, onun için, Yunanlılar değil, bilakis İslam Dünyası oldu. “Denebilir ki; cebirin geometriye tatbikati demek olan, analitik geometriyi münferit bir geometri dalı haline getirme metotlarını ilk olarak Hârizmî tarafından ortaya konmuştur.
Trigonometrinin Avrupa’da duyulup dağılmasına etkili olanların başında gelen Sabit bin Kur-ra, geometri konularındaki çalışmaları ile de adını zamanımıza kadar sürdürmüş olan ünlü matematikçilerimizden biridir. Konikler kitabı ile Apolonyos’a serh yazdı. Huneyn bin İshak tarafından Öklid’in Elementler adlı eserine yazılan serhi, ilaveler yaparak düzeltti. Menalaus, Apolonyos, Pisagor, Archimed, Öklid ve Theodosus’un eserlerini Arapçaya tercüme etmekle, geometriye, zaman için orijinal olan, yeni bilgiler kazandırmıştır.

Eski Yunan’da Geometri

Eski Yunan matematikçilerinden Demokrit’te, gelişmiş bir geometri bilgisi görülmektedir. Ancak kaynaklar; Demokrit’in Eski Mısır matematiği ile temasta olduğunda hemfikirdir. Thales, ikizkenar üçgenin taban açılarının eşit olduğunu bildiği, ancak üçgenin iç açılarının 180 derece olduğu yolundaki bilgilerin Thales’e ait olmadığı anlaşılmıştır. Pisagor, geometri çalışmalarında, güney İtalya’da Kroton’da okullar açmış ve geometrinin gelişmesini sağlamıştır. Öklid, Elementler adlı geometri kitabını yazmakla ün yapmıştır. Bu eserdeki geometri bilgileri 2000 yıl kadar, fazla bir değişikliğe uğratılmadan, geometri derslerinde okutulmuştur. Bu eserin bazı kısımları, günün ihtiyaçlarına cevap vermek için, 1700 yılından itibaren modernleştirilmiştir. Bugünkü geometride bilinen birçok bilgiler, Elementler’de vardır.
Kaynaklar; geometrinin önce Eski Mısır’da başladığını, Eski Yunanlılar’ın geometriyi Eski Mısır’dan öğrenmiş olduklarını belirtmektedir. Tarihçi Herodot (M.Ö. 485-425), geometrinin Eski Mısır’da başladığını ve arazi ölçüsü ihtiyacından doğmuş olduğunu belirtir. Aydın Sayılı: “Bunun gerçeğe uygun olduğunu, yani bölge bir menşeden başlayarak, geometrinin Eski Mısır’da bir ilim haline geldiğini kabul edebiliriz” der. Eski Yunanlılar’ın, matematikte ve özellikle geometri bakımından, Eski Mısırlılar’dan geniş şekilde yararlanmış oldukları anlaşılmıştır. Bu durumda, Eski Yunanlılara atfedilen geometri bilgileri hakkında şu görüşü belirtebiliriz:
Eski Yunanlılar, Eski Mısır yörelerini uzun yıllar dolaşmışlar. Bu yöreleri ilk dolaşan ve Eski Yunan’ın ilk bilgini sayılan Thalestir (M.Ö. Miletes 640 ? – 548 ?) .Thales’ten sonra Pisagor’un ve Öklid’in bu yöreleri uzun yıllar dolaştıkları tarihi bir gerçektir. Bu bilginler, buralardan elde ettikleri geometri bilgilerini almışlardır. Ayrıca, geometriyi sistemli ispatlara dayanan müstakil bir bilim haline getirmişlerdir. Eski Yunanlılar’ın başarısı, geometriyi sistemleştirip, müstakil bir matematik dalı haline getirmiş olmalarıdır.

Avrupa’da Analitik Geometri Descartes ve Analitik Geometri

Çoğu Batılı matematikçiler; analitik geometriyi, Fransız matematikçi ve filozofu René Descartes (1596 – 1650) ile başlatırlar. Bu konuda denir ki: “Descartes cebiri geometriye soktu ve analitik geometriyi kurdu”. Descartes’in kurduğu analitik geometri, zihiniyet bakımından eski Yunanlıların, geometri yardımıyla aritmetiği kavramak istemelerinin tam tersine olarak, geometriyi aritmetik ve cebirle sistemleştirip kavramadan çıkmıştır.
Geometrik sorunlar, ancak cebrik bir incelemeye müsait oldukça analitik geometride yer alırlar. Descartes’in 1637 yılında yayımlanan La Géométri’de bulunan analitik geometri konuları, Descartes’ten 1000 yıl daha önceki yıllarda yazılmış, geometri ve cebir kitaplarında vardı. Descartes önceki yıllarda bilinen, analitik geometri konularını müstakilleştirmiş ve kısmen de genişletmiştir. Descartes; bir doğru üzerinde, başlangıç olarak aldığı, bir noktanın, sağında pozitif, solunda da negatif büyüklükleri göstermeyi esas alan geometrik bir anlam vermiş ve cebir ifadeleri içinde göstermeyi başarmıştır.

Hârizmî ve Analitik Geometri

Hârizmî tarafından 830 yılında yazılan Cebri ve’l Mukabele adlı eserin ikinci bölümü; ikinci dereceden tam olmayan denklemlerin geometrik çözümünü konu edinir. Her tip denklem için, iki ayrı çözüm yolu gösterilmiştir. Bu çözüm yollarından birincisi geometrik çözüm yolu olup, bu çözüm yoluna “kare dikdörtgen metodu” denmektedir. Bu tür çözüm şeklini, Eski Mısır, Mezopotamya,eski Yunan ve Eski Hint matematiğinde görmek mümkün değildir. Hârizmî’nin bu çözüm şekli, matematikte cebir ve geometri arasında, bir nevi yakınlık tesisini hedef tutan araştırmanın ilk ürünüdür. Hemen belirtmek gerekir ki, matematik tarihi eserleri, analitik geometriyi Fransız matematikçisi Descartes ile başlatır. Konun gerçek yönü şudur: Hârizmî, Descartes’ten tam 1000 yıl analitik geometriye ait uygulamanın ilk örneklerini vermiştir.

Ömer Hayyam ve Analitik Geometri

Ömer Hayyam denklem konusu ile de çok önemli çalışmalar ortaya koymuştur. Birçok cebir denklemlerinin çözümünü geometrik olarak açıklamıştır. Hayyam, kübik denklemlerin kısmi çözüm şekillerini, sistematik bir şekilde tarif ve tasnif etmiş ve birçok denklemleri geometri olarak çözmeyi başarmıştır. Fransız matematikçi Descartes’ten 1000 yıl önce Hârizmî, 600 yıl önce Ömer Hayyam tarafından, analitik geometriye ait zamanı için orjinal problem ve çözüm yolları ortaya konmuştur. Analitik geometrinin Descartes’le olan ilgisini şu şekilde belirtmek gerçeğin tam ifadesi olsa gerekir. Fransız matematikçi ve filozof Descartes, mevcut analitik geometri bilgilerini, tarif ve tasnif ederek sistemleştirmiş, aynı zamanda da kısmen genişletmiştir.

Benzer Konular

Geometri Konu Anlatımı-Yamuk

Yamukta açılar-Yamuğun Alanı-İkizkenar Yamuk–Dik Yamuk-Yamukta Orta Taban-Kenar Uzunlukları Bilenen Yamuk-Köşegenleri Dik Kesişen Dik Yamuk-Köşegenleri Dik...

Geometri Konu Anlatımı-Üçgende benzerlik

Açı – Açı Benzerlik Teoremi-Kenar – Açı – Kenar Benzerlik Teoremi-Kenar – Kenar – Kenar...

Geometri Konu Anlatımı-Uzay geometri

Düzlemle Doğrunun Durumları-Düzlemde İki Doğrunun Birbirine Göre Durumları-Düzlemde Üç Doğrunun Birbirlerine Göre Durumları-Düzlemde Nokta İle...

Geometri Konu Anlatımı-Üçgende alan

Genel Alan Bağıntısı -Dik Üçgende Alan-Orta Dikme indirmek icin TIKLAYIN (378)...

Yukarı